Telegram Group & Telegram Channel
Meta-Learning Bidirectional Update Rules [2021] - обучаем бэкпроп

На мой взгляд, за мета-обучением будущее, но обучаемый алгоритм не должен содержать много параметров, чтобы не переобучиться на мета-трейне. На днях наткнулся на данную работу, предлагающую свой вариант мета-параметризации.

Рассмотрим полносвязную нейросеть в такой перспективе: у каждого нейрона есть 2 "канала" - для forward и backward. Мы сначала совершаем цепочку расчётов по первому каналу нейрона слева направо, далее считаем градиент ошибки по последнему слою, и по второму каналу совершаем цепочку расчётов справа налево. Это будет градиент, который мы потом с некоторым learning rate применим к весам. Это на картинке слева. Обобщаем это следующим образом:

1) Теперь у каждого нейрона K "каналов", причём они не независимы, и суммируются все со всеми и в forward, и в backward, и даже в weights update. Но мы обучаем несколько матриц K x K, используемые как веса при суммировании из каждого в каждый канал во всех этапах.

2) Добавим мета-параметры, похожие на momentum и learning rate

3) На вход первому слою будем подавать как обычно input, а последнему просто правильный ответ, чтобы алгоритм сам обучился тому, как обновлять параметры

Теперь эти ~O(K^2) параметров можно обучать, оптимизируя производительность на валидационном датасете. Обучать их можно как генетикой, так и напрямую градиентным спуском, если модель обучать не так много шагов.

Если подумать, схема похожа на ту же VSML, с разницей в том, что здесь авторы строят свою модель именно как обобщение схемы forward-backward, из-за чего возникает много лишней нотации и слегка переусложнённых конструкций. Авторы указывают, что в их работе нет RNN, но это различие скорее в интерпретации происходящего. Глобальная логика та же - обучаемые небольшие матрицы регулируют пробрасывание информации по архитектуре, а также обновление содержащейся в ней памяти, именуемой весами.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/177
Create:
Last Update:

Meta-Learning Bidirectional Update Rules [2021] - обучаем бэкпроп

На мой взгляд, за мета-обучением будущее, но обучаемый алгоритм не должен содержать много параметров, чтобы не переобучиться на мета-трейне. На днях наткнулся на данную работу, предлагающую свой вариант мета-параметризации.

Рассмотрим полносвязную нейросеть в такой перспективе: у каждого нейрона есть 2 "канала" - для forward и backward. Мы сначала совершаем цепочку расчётов по первому каналу нейрона слева направо, далее считаем градиент ошибки по последнему слою, и по второму каналу совершаем цепочку расчётов справа налево. Это будет градиент, который мы потом с некоторым learning rate применим к весам. Это на картинке слева. Обобщаем это следующим образом:

1) Теперь у каждого нейрона K "каналов", причём они не независимы, и суммируются все со всеми и в forward, и в backward, и даже в weights update. Но мы обучаем несколько матриц K x K, используемые как веса при суммировании из каждого в каждый канал во всех этапах.

2) Добавим мета-параметры, похожие на momentum и learning rate

3) На вход первому слою будем подавать как обычно input, а последнему просто правильный ответ, чтобы алгоритм сам обучился тому, как обновлять параметры

Теперь эти ~O(K^2) параметров можно обучать, оптимизируя производительность на валидационном датасете. Обучать их можно как генетикой, так и напрямую градиентным спуском, если модель обучать не так много шагов.

Если подумать, схема похожа на ту же VSML, с разницей в том, что здесь авторы строят свою модель именно как обобщение схемы forward-backward, из-за чего возникает много лишней нотации и слегка переусложнённых конструкций. Авторы указывают, что в их работе нет RNN, но это различие скорее в интерпретации происходящего. Глобальная логика та же - обучаемые небольшие матрицы регулируют пробрасывание информации по архитектуре, а также обновление содержащейся в ней памяти, именуемой весами.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/177

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

Knowledge Accumulator from us


Telegram Knowledge Accumulator
FROM USA